Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2,4-Dichlorophenyl)-4,4-dimethylpent-1-en-3-one

Lin Xia and Ai-Xi Hu*

College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, People's Republic of China Correspondence e-mail: axhu0731@yahoo.com.cn

Received 28 August 2008; accepted 17 September 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.085; data-to-parameter ratio = 15.2.

In the title compound, $C_{13}H_{14}Cl_2O$, the carbonyl and ethenyl groups are coplanar with the aromatic ring. There are four molecules in the asymmetric unit and all atoms in the molecule lie on mirror planes. The molecules are packed in an offset face-to-face arrangement showing $\pi - \pi$ stacking interactions involving the benzene rings [centroid-centroid distance = 3.564 (2) Å].

Related literature

For related compounds, see: Wang et al. (2008).

Experimental

Crystal data

$C_{13}H_{14}Cl_2O$	
$M_r = 257.14$	
Orthorhombic, Pnma	
a = 11.2553 (7) Å	
b = 7.0458 (4) Å	
c = 15.4969 (9) Å	

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.798, T_{\max} = 0.928$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$ S = 1.071444 reflections

Z = 4Mo $K\alpha$ radiation $\mu = 0.50 \text{ mm}^{-1}$ T = 173 (2) K $0.47 \times 0.39 \times 0.15 \text{ mm}$

V = 1228.94 (13) Å³

6162 measured reflections 1444 independent reflections 1227 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

95 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors express their thanks to the National Key Technology R&D Program (No. 2006BAE01A01-4)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2260).

References

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Wang, Y., Hu, A.-X., Cao, G., Li, G.-X., Zhang, J.-Y., Xia, L., Ou, X.-M. & Xu, J.-B. (2008). Chin. J. Org. Chem. 28, 443-448.

supplementary materials

Acta Cryst. (2008). E64, o1983 [doi:10.1107/S1600536808029838]

1-(2,4-Dichlorophenyl)-4,4-dimethylpent-1-en-3-one

L. Xia and A.-X. Hu

Comment

Phenyl-4,4-dimethylpentan-3-one derivatives are important intermediates in medicinal industry (Wang *et al.*, 2006). Herein we report the synthesis and crystal structure of 1-(2,4-dichlorophen-yl)-4,4-dimethylpentan-3-one.

Experimental

3,3-dimethylbutan-2-one(0.0105 mol) was added dropwise into a solution of 2,4-dichlorobenzaldehyde (0.01 mol) and 60 ml ethanol. Then 0.1 g 50% NaOH solution as catalyst was added and the reaction was stirred at 333 K for 5 h. The solvent was evaporated to about half volume, then cooled to 277 K and the precipitate formed. This was filtered and dried to give the desired product (yield: 94.7%). Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

The methyl H atoms were positioned geometrically (C—H=0.98 Å) and torsion angles refined to fit the electron density $[U_{iso}(H) = 1.5U_{eq}(C)]$. Other H atoms were placed in calculated position (methylene C—H = 0.95Å and aromatic C—H=0.95Å) and refined as riding $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Figures

Fig. 1. Molecular structure showing 30% probability displacement ellipsoids. H atoms are omitted for clarity.

Fig. 2. Packing diagram showing π - π stacking interactions.

1-(2,4-Dichlorophenyl)-4,4-dimethylpent-1-en-3-one

Crystal data	
$C_{13}H_{14}Cl_2O$	$D_{\rm x} = 1.390 {\rm ~Mg~m}^{-3}$
$M_r = 257.14$	Melting point: 385 K
Orthorhombic, Pnma	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 3552 reflections

a = 11.2553 (7) Å b = 7.0458 (4) Å c = 15.4969 (9) Å $V = 1228.94 (13) \text{ Å}^3$ Z = 4 $F_{000} = 536$

Data collection

Bruker SMART 1000 CCD diffractometer	1444 independent reflections
Radiation source: fine-focus sealed tube	1227 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 173(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -12 \rightarrow 14$
$T_{\min} = 0.798, T_{\max} = 0.928$	$k = -8 \rightarrow 9$
6162 measured reflections	$l = -19 \rightarrow 14$

 $\theta = 2.2 - 27.0^{\circ}$

 $\mu = 0.50 \text{ mm}^{-1}$

T = 173 (2) K

Block, colorless

 $0.47 \times 0.39 \times 0.15 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 0.6612P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
1444 reflections	$\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$
95 parameters	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z		$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cl1	0.73794 (5)	0.2500	0.45333	3 (4)	0.03276 (17)	
Cl2	0.34147 (5)	0.2500	0.2634	7 (3)	0.03138 (17)	
C1	0.57275 (19)	0.2500	0.6128	6 (13)	0.0239 (4)	
H1	0.6571	0.2500	0.6149		0.029*	
C2	0.51505 (19)	0.2500	0.6876	6 (13)	0.0265 (5)	
H2	0.4307	0.2500	0.6869		0.032*	
C3	0.57686 (18)	0.2500	0.7724	0 (13)	0.0225 (4)	
C4	0.49783 (18)	0.2500	0.8526	0 (12)	0.0227 (4)	
C5	0.5740 (2)	0.2500	0.9338	0 (14)	0.0314 (5)	
H5A	0.6163	0.1518	0.9347		0.047*	0.50
H5B	0.5225	0.2500	0.9848		0.047*	
H5C	0.6252	0.3625	0.9340		0.047*	0.50
C6	0.41949 (13)	0.0709 (2)	0.8509	6 (10)	0.0285 (3)	
H6A	0.3670	0.0751	0.8005		0.043*	
H6B	0.3714	0.0656	0.9036		0.043*	
H6C	0.4701	-0.0421	0.8477		0.043*	
C7	0.51674 (18)	0.2500	0.5272	6 (13)	0.0224 (4)	
C8	0.58317 (17)	0.2500	0.45064	4 (13)	0.0217 (4)	
C9	0.53111 (19)	0.2500	0.3694	5 (13)	0.0244 (4)	
Н9	0.5785	0.2500	0.3187		0.029*	
C10	0.40892 (19)	0.2500	0.3642	6 (13)	0.0241 (4)	
C11	0.33861 (18)	0.2500	0.4374	5 (15)	0.0267 (5)	
H11	0.2544	0.2500	0.4329		0.032*	
C12	0.39335 (19)	0.2500	0.5176	7 (14)	0.0265 (5)	
H12	0.3451	0.2500	0.5680		0.032*	
01	0.68512 (13)	0.2500	0.77742	2 (10)	0.0323 (4)	
4 1. 1		(82)				
Atomic aisplacen	ient parameters (А)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0204 (3)	0.0528 (4)	0.0251 (3)	0.000	0.00297 (19)	0.000
Cl2	0.0291 (3)	0.0413 (3)	0.0237 (3)	0.000	-0.0039 (2)	0.000
C1	0.0243 (10)	0.0245 (10)	0.0228 (10)	0.000	0.0018 (8)	0.000
C2	0.0232 (10)	0.0337 (12)	0.0225 (10)	0.000	-0.0004 (8)	0.000
C3	0.0221 (10)	0.0236 (10)	0.0218 (10)	0.000	0.0009 (8)	0.000
C4	0.0202 (9)	0.0284 (11)	0.0195 (9)	0.000	0.0007 (8)	0.000
C5	0.0256 (11)	0.0463 (14)	0.0223 (10)	0.000	-0.0029 (9)	0.000
C6	0.0269 (7)	0.0303 (8)	0.0285 (8)	-0.0032 (6)	0.0043 (6)	0.0008 (6)
C7	0.0238 (10)	0.0204 (10)	0.0229 (10)	0.000	0.0011 (8)	0.000
C8	0.0190 (9)	0.0209 (10)	0.0252 (10)	0.000	0.0019 (8)	0.000

0.0217 (10)

0.0217 (10)

0.0285 (11)

0.0228 (10)

0.000

0.000

0.000

0.000

0.0039 (8)

-0.0019 (8)

0.0005 (8)

0.0055 (8)

0.000

0.000

0.000

0.000

C9

C10

C11

C12

0.0276 (11)

0.0286 (11)

0.0205 (10)

0.0256 (11)

0.0240 (10)

0.0220 (10)

0.0311 (12)

0.0310 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

01	0.0200 (7)	0.0468 (10)	0.0301 (8)	0.000	0.0026 (6)	0.000
Geometric parar	meters (Å, °)					
Cl1—C8		1.742 (2)	С	5—Н5С		0.9800
Cl2—C10		1.737 (2)	С	6—H6A		0.9800
C1—C2		1.329 (3)	С	6—H6B		0.9800
C1—C7		1.469 (3)	С	6—Н6С		0.9800
C1—H1		0.9500	С	7—C12		1.397 (3)
C2—C3		1.486 (3)	С	7—С8		1.403 (3)
С2—Н2		0.9500	С	8—C9		1.388 (3)
C3—O1		1.221 (2)	С	9—C10		1.378 (3)
C3—C4		1.528 (3)	С	9—Н9		0.9500
C4—C5		1.522 (3)	С	10—C11		1.383 (3)
C4—C6		1.5398 (19)	С	11—C12		1.387 (3)
C4—C6 ⁱ		1.5398 (19)	С	11—H11		0.9500
С5—Н5А		0.8400	С	12—H12		0.9500
С5—Н5В		0.9799				
C2—C1—C7		125.3 (2)	Н	6A—C6—H6B		109.5
C2-C1-H1		117.3	C	4—С6—Н6С		109.5
C7—C1—H1		117.3	Н	6A—C6—H6C		109.5
C1—C2—C3		122.83 (19)	Н	6B—C6—H6C		109.5
С1—С2—Н2		118.6	С	12—C7—C8		116.09 (18)
С3—С2—Н2		118.6	С	12—C7—C1		121.53 (19)
O1—C3—C2		121.57 (19)	С	8—C7—C1		122.39 (18)
O1—C3—C4		121.93 (18)	С	9—C8—C7		122.84 (19)
C2—C3—C4		116.50 (17)	С	9—C8—Cl1		116.34 (15)
C5—C4—C3		110.15 (17)	С	7—C8—Cl1		120.82 (15)
C5—C4—C6		109.64 (11)	С	10—C9—C8		118.32 (19)
C3—C4—C6		108.65 (11)	С	10—С9—Н9		120.8
C5—C4—C6 ⁱ		109.64 (11)	С	8—С9—Н9		120.8
C3—C4—C6 ⁱ		108.65 (11)	С	9—C10—C11		121.55 (19)
C6—C4—C6 ⁱ		110.09 (17)	С	9—C10—Cl2		119.27 (16)
C4—C5—H5A		109.5	С	11—C10—Cl2		119.17 (16)
C4—C5—H5B		109.5	С	10—C11—C12		118.73 (19)
H5A—C5—H5B		108.7	C	10—C11—H11		120.6
C4—C5—H5C		109.4	C	12—C11—H11		120.6
Н5А—С5—Н5С		109.5	С	11—C12—C7		122.5 (2)
H5B—C5—H5C		110.2	С	11—C12—H12		118.8
С4—С6—Н6А		109.5	С	7—С12—Н12		118.8
С4—С6—Н6В		109.5				
С7—С1—С2—С	3	180.0	С	1—C7—C8—C9		180.0
C1—C2—C3—O	01	0.0	С	12—C7—C8—Cl1		180.0
C1—C2—C3—C	4	180.0	C	1—C7—C8—C11		0.0
01—C3—C4—C	25	0.0	С	7—С8—С9—С10		0.0
C2—C3—C4—C	5	180.0	С	l1—C8—C9—C10		180.0
01—C3—C4—C	6	-120.11 (11)	С	8—C9—C10—C11		0.0
C2—C3—C4—C	6	59.89 (11)	С	8—C9—C10—Cl2		180.0

O1—C3—C4—C6 ⁱ	120.11 (11)	C9-C10-C11-C12	0.0
C2—C3—C4—C6 ⁱ	-59.89 (11)	Cl2—C10—C11—C12	180.0
C2—C1—C7—C12	0.0	C10-C11-C12-C7	0.0
C2—C1—C7—C8	180.0	C8—C7—C12—C11	0.0
C12—C7—C8—C9	0.0	C1—C7—C12—C11	180.0
Symmetry codes: (i) x , $-y+1/2$, z .			

Fig. 2

